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Let Q be a plane bounded region. Let all = {U,,(P):fL(P) E Loo(Q), u" E H:.o(Q)
and a(P, fL(P))U".xx + 2b(P, fL(P))U".XY + c(P, fL(P))U".yy = f(P) for P E Q}; here
we are given a(P, X), b(P, X), c(P, X) E Loo(Q x £1), f(P) E Lp(Q) with p > 2,
and our partial differential equation is uniformly elliptic. The functions fL(P) are
called profiles. We establish sufficient conditions-which when they apply are
constructive-that there exist a fLo E Loo(Q) such that u"/P) > u,,(P) for all
P E Q and for each fL E Loo(Q). Similar results are obtained for a difference equa
tion and convergence is proved.

1. INTRODUCTION

Let Q be a region of the plane and let Loo(Q) be the set of equivalence
classes of bounded measurable functions on Q. Let P = (x, y) be a generic
point of Q.

Let a(P, X), b(P, X), and c(P, X) be given functions which satisfy the
following condition:

(I) The functions a(P, X), b(P, X), and c(P, X) E qn x £1), where En
is Euclidean n-space. Moreover, for every real (g1' g2) E £2 and for every
(P, X) E n x £1, there exist real positive and finite constants Ao and A1 

which are independent of P, X, g1' g2-such that

(a) Ao(g12+ g22) :'( a(P, X) g12 + 2b(P, X) g1g2 + c(P, X) g22

:'( A1(g12 + g22)
and

(b) Ao > 2b(P, X) ~ 0

for all P E Q and for all X EEl.
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Let fL(P) E Loo(Q). If (I) is satisfied, then there exists one and only one
u...{P) E H:.oCQ) such that

a(P, fL(P)) U".xx + 2b(P, fL(P)) U".Xy + c(P, fL(P)L.yy = f(P), P E Q, (1.1)

u,,(P) = 0, P E 8Q,

when we assume that f(P) E Lp(Q) with p ;? 2; Talenti [9]. The partial
derivatives of u,,(P) are with respect to the components of P and the inclusion
of fL in the notation u...{P) is to emphasize the dependence of a solution to (1.1)
on the values of fL. The function fL is called a profile and u" is called the
solution associated with the profile fL.

The existence of a solution to (I.1)-as proved by Talenti-does not
require the condition I(b). However we will consider a difference equation
associated with (1.1) and for the methods of this paper to apply to that
discrete problem we must require l(b) so as to be assured that our difference
equation is antitone.

Suppose there exists an element fLo E Loo(Q) such that, for each fL E Loc;(Q),

u"o(P) ;? u...{P) (1.2)

for every P E Q. Then we call fLo a maximalprofile and the solution associated
with fLo is called a maximal solution.

Our purpose in this paper is to establish sufficient conditions that (1.1)
has a maximal solution and that a discrete equation-as yet unspecified
associated with (1.1) has a maximal solution. We will also derive conditions
for the convergence of the discrete maximal solutions to a solution of (1.2);
hence maximal solutions to the discrete problem will approximate a maximal
solution of (1.1).

The next requirement we impose on the principal coefficients of (1.1)
will allow us to restrict the profiles so that their range is in a fixed compact
subset:

(ll) There exists two finite and distinct real numbers A and B such that
for each P E Q and for each X E £1 there is an Y E [A, B] C £l-this interval
may be an open, half-open or closed interval-for which a(P, X) = a(P, Y),
b(P, X) = b(P, Y), and c(P, X) = c(P, Y).

This condition is satisfied if, for example, each of the three functions are
periodic functions of X but not necessarily of the same period.

Let £,0 = {fL(P): fL(P) E Loo(Q) and A:':( fL(P) :':( B a.e.}, let dIf =
{u,,: u" E H:.o(Q) solves (1.1) and fL E Loc;(Q)} and let dlfo = {u,,: fL(P) E £,0 and
U" E H:.o(Q) solves (1.1}. If the coefficients in (Ll) satisfy the conditions (I)
and (II) - but we do not need (b) here, then dIf = dIf0 • This is obviously true
if fL(P) is a step-function on Q. Now the result follows since convergence a.e.
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of fLn(P) E L",,(f2) to fi(P) implies that u"n converge strongly in Hi.o(Q) to up. .
Therefore our search for a maximal profile may be restricted to £'0.

In order to obtain an existence theorem for a maximal solution - both for
(1.1) and our discrete equation associated with (1.1) - we must make a
further assumption on the behavior of the principal coefficients.

(Ill) Let P E Q. Then, for each of the eight possible combinations
of the terms max{a(P, Y): Y E [A, Bn or min{a(P, Y): Y E [A, Bn, and
max{b(P, Y): Y E [A, Bn or min{b(P, Y): Y E [A, Bn, and max{c(P, Y):
Y E [A, Bn or min {c(P, Y): Y E [A, BJ}, there exist an X E [A, B] such that
a(P, X), b(P, X), and c(P, X) assumes the corresponding value of the
particular combination; the interval [A, B] may be open, half-open or closed.
In this condition we are requiring that, for any P E Q, there exists an
Xo E [A, B] such that a(P, Xo) = max{a(P, Y): Y E [A, Bn, b(P, Xo) =

max{b(P, Y): Y E [A, Bn, c(P, Xo) = max{c(P, Y): Y E [A, Bn and there
exists an Xl E [A, B] such that a(P, Xl) = a(P, Xo), b(P, Xl) = b(P, Xo),
c(P, Xl) = min{c(P, Y): Y E [A, Bn and there exists X2 E [A, B] such that
a(P, X 2) = a(P, Xo), b(P, X 2) = min{b(P, Y): Y E [A, Bn, c(P, X 2) = c(P, Xl),
etc.

If a(P, X) = 4 + cos X, b(P, X) ==: 0, and c(P, X) = 1, then condition (III)
is satisfied with [A, B] = [0, 7T]. This is the smallest interval over which (III)
is satisfied but any finite interval containing [0, 7T] would do.

We will also prove the existence of maximal solutions, both for (Ll)
and a difference equation associated with it, when we replace (III) by the
condition (IV); we will assume that b(P, X) == ° as it will simplify our
computations and the extension to the general case will be easy.

(IV) Let a(P, X), c(P, X) E C2(El) for each P E Q. Then there exists
an interval [A, B]-which may be taken as open, half-open or closed interval
-such that the following conditions are satisfied:

(i) For each (P, X) E Q x [A, B], Ia'(P, X)I + I c'(P, X)I > 0;

(ii) for each P E Q there exists Xl , X 2 , X 3 , and X 4 in the interior
of the interval [A, B] such that a(P, Xl) = max{a(P, Y): Y E [A, Bn,
a(P, X2) = min{a(P, Y): Y E [A, Bn, c(P, X3) = max{c(P, Y): Y E [A, Bn,
and c(P, X 4) = min{c(P, Y): Y E [A, Bn;

(iii) if, for X, Y E [A, B], we have that a'(P, X) c'(P, X) a'(P, Y)
c'(P, Y) =1= °and d(P, X) c'(P, Y) = a'(P, Y) c'(P, X), then X = Y;

(iv) if, for X, Y E [A, B], a'(P, X) = a'(P, Y) = 0, and a"(P, X)
a"(P, Y) ;?; 0, then X = Y;

(v) if, for X, Y E [A, B], c'(P, X) = c'(P, Y) = 0, and c"(P, X)
c"(P, Y) ;?; 0, then X = Y;
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(vi) for each P E Q there is an 8 = 8(P) > 0 such that, for all
'\E [-1,1] and XE [A, B].

[ a'(P, X) c"(P, X + '\8) - a"(P, X + '\8) c'(P, Y)! > o.

The conditions (I), (II), and (IV) are satisfied if, for example, a(P, X) =

2 + sin X, b(P, X) = 0, and c(P, X) = 2 + cos X; here [A, B] = [0, 27T)
and, for each P E Q, 8(P) is any element of (0, 7T/2). These functions do not
satisfy the condition (III). Hence, in some sense, the condition in (IV) is
complementary to the condition in (III).

In conditions (II), (III), and (IV) we are not necessarily requiring that the
interval [A, B] be the smallest interval satisfying these conditions. Hence,
when we assume that (II) and (III) or (II) and (IV) are satisfied, we simply
seek a finite interval [A, B] over which these conditions hold.

The methods of this paper require (III) or (IV). These conditions are both
general and restrictive. Since our methods-when they apply-are con
structive, it is not unreasonable that the hypotheses are restrictive. However
we do believe-based on some computer experimentation-that our results
are valid under conditions much less confining than (III) or (IV).

Our motivation for the study of problems of this type-where the control
appears in the principal coefficients of the governing equation-is provided
by concrete engineering problems; e.g. certain optimization problems in
hydrodynamic lubrication and structural dynamics.

The first to develop the idea of a maximal solution was C. Pucci in [7].
In that paper he proved in an eloquent manner the following result: There
exists a triplet of functions (li(P), b(P), c(P)) E!fa = {(a(P), b(P), c(P)) E Loo(Q)
with ex I ~ [2 ~ a(P) ~12 + 2b(P) ~1~2 + c(P) ~22 ~ I ~ [2 = ~12 + ~22 for
(gl , g2) EP} such that every solution u = u(a, b, c: P) E H 22(Q) of the
equation

au,xx + 2bu,xy + cU.yy = 0, P E Q,

u(P) = t/J(P), P E aQ,

with (a, b, c) E ff: , is such that

u(li, 5, c: P) ;;;, u(a, b, c: P)

for all P E Q and for all (a, b, c) E!fa • The methods of [7] are not constructive
and in our problem we are given a much more specific class of control
functions.

In Section 2 we assume that conditions (I), (II), and (III) are satisfied and
that Q is a rectangular region. We associate with (1.2) a discrete problem
and derive sufficient conditions that a discrete maximal solution exist. When
these conditions are satisfied we obtain the discrete maximal solution by an
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iterative method. We also discuss a modification of the iterative method so
that the discrete profiles in the iteration converge. The condition in I(b) is
only to assure that the difference problem is antitone. We could allow for
the case that Ao > 2 I b(P, X)! but this would require a change in the
formulation of the mixed second order difference quotient depending on the
sign of b(P, X). The restriction that Q be a rectangular region is due to the
fact that our methods require an estimate on the discrete L 2(Q) norm of
second order difference quotients. These estimates were first derived in [6]
for rectangular regions and later in [3] for a circular region but using
unbalanced difference quotients. Additional comments on the dependence
on the geometry of Q are given at the end of this section.

In Section 3 we show how our method for the discrete problem may be
extended to the problem in (1.2) when the governing equation is given by (1.1).
We then show that maximal solutions of our discrete problem converge to
a maximal solution of (1.2). The existence of a maximal solution for the
differential equation is over more general regions than rectangles because the
L 2(Q) estimates on second order derivatives is well established.

In Section 4 we consider the discrete problem in Section 2 when the
conditions (I), (II), and (IV) are satisfied. The treatment of the differential
equation satisfying these conditions is not presented as it follows closely
the treatment in Section 3 with modifications given in Section 4.

In Section 5 two numerical examples are given.
It is possible that a given region Q may be decomposed into two regions

such that (III) is satisfied over one region and (IV) is satisfied over the
other region. Our methods may be modified so as to cover this case as well as
the presence of lower order terms in (l.l). It is also clear that what we say
about maximal solutions may also be said-with some slight changes-for
"minimal solutions."

2. A DISCRETE PROBLEM WHEN (III) IS SATISFIED

In this section we will establish criteria that a discrete problem associated
with (1.2) has a solution whenever the principal coefficients (i.e., the coeffi
cients of the second order derivatives) satisfy the conditions in (I), (II),
and (III).

We assume that Q is the rectangular region determined by the vertices
(0, 0), (a, 0), (a, b), and (0, b). The extension to more general regions will be
discussed at the end of this section.

Place a square grid on the plane. If P = (x, y) is a grid point,
then the neighbors of P are the points PI = (x + h, y), P2 = (x, Y + h),
P3 = (x - h, y), P4 = (x, Y - h), and Ps = (x + h, y + h). Let Q h be the
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set of mesh points P E Q such that all the neighbors of P are in Q and let oQh
be the set of mesh points in Q with at least one neighbor in the exterior of Q.
We assume-with no loss in generality-that h > 0 is so selected that the
oQh is contained in the oQ.

Let Si, i = 1, 2, 3, 4, be the sides of the oQ with Sl on the line x = a,
S2 on the line y = b, etc. Those mesh points on Si will be denoted by S(h)i .

Let ;Rho = {W(P): W(P) is defined on Qh and A ~ W(P) ~ B for each
P E Qh}; this is our space of admissible discrete profiles. The difference
problem we use to approximate (Ll) is

a(P, W(P» Ux:iP) + 2b(P, W(P» UxY{P) + c(P, W(P» Uy:;CP)

=f(P), PEQh, (2.1)

U(P) = 0, P E oQh •

This equation is obtained from (Ll) by replacing u.xx(P) by Uxx(P) =
{U(P1) + U(Pa) - 2U(P)}jh2, U,yy(P) by Uyy(P) = {U(P2) + U(P4) - 2U(P)}jh2,
and u,xy{P) by Uxy{P) = {U(P5) - U(P2) - U(P1) + U(P)}jh2. Note that Ux
denotes a forward difference quotient and Ux denotes a backward difference
quotient.

In order to simplify our notation we define the operator

Yh(W)[V(P)] = a(P, W(P» Vx:iP) + 2b(P, W(P» Vxy{P)

+ c(P, W(P» Vyy(P) (2.2)

where W is an arbitrary element of ;RhO and V is an arbitrary element of
d h = {V: V(P) is everywhere defined and finite on Qh' and V(P) = 0
for P E oQh }.

LEMMA 1. Let the principal coefficients satisfy the condition (1) and assume
that f(P) isfinitefor each P E Qh' Let W(P) be an element in ;RhO. Then there
exists one and only one element Uw E d h such that

(2.3)

for all P E Q h . Moreover the operator Yh(W)[V] is antitone for each WE ;RhO
and for V E d h ; i.e., Yh(W)[V] ~ 0 at each P E Q h implies that V(P) ?'o 0
at each P E Q h .

Proof The condition in (I) assures us that the matrix associated with
-Yh(W)[V] is monotone. Our result now follows.

We remark that the existence and uniqueness part of Lemma 1 does not
require I(b) but that condition is necessary for the antitone property.

Observe that the notation for a solution to (2.3), Uw , carries with it the



EXISTENCE OF MAXIMAL SOLUTIONS 257

notation for the discrete profile which is used in the principal coefficients
of (2.1). In general, if two discrete profiles, Wi and W2 , differ at only one
point, then the corresponding solutions to (2.3), Uw and Uw , will differ

1 2

at all points of Q h •

If V(P) E d" , then II V 11 2 is defined as

II V 11
2 = h2 I V2(P)

PEQh

and II V il~ is defined as

LEMMA 2. If the hypotheses of Lemma I are satisfied-but we do not
need (b) of condition (I), then, for each and every WE Jf'h0 ,

(2.5)

Moreover, for each and every WE Jf'hO'

(2.6)

Proof The result in (2.5) is proved in [4, p. 365] for our difference
approximation. Although (2.6) is also proved there we will give here an
easier derivation. Let P = (x, y) E Q h • Then

I
x-h I ( a-It )1/2

I Uw(P) [ = h Y~O Uw.,(Y, y) ~ a1
/
2 h Y~O I Uw.,(Y, y)1 2

and

Hence,
a-h

h L I Uw.,(y, Y)1 2 ~ bh2 L I UWxy 12
y=O Dh'

and the result follows.
The discrete problem associated with (1.3) is the following: Find an

element Wo E Jf',.°such that

Uwu(P) ;?; Uw(P)
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for each P E D" and for every WE £',,0. We call Wo a discrete maximal profile
and we call Uw a discrete maximal solution. By our uniqueness result a

o
discrete maximal profile determines a discrete maximal solution.

LEMMA 3. If the principal coefficients of (2.1) satisfy the conditions in (I)
and (II), then to every X(P) E{X: X(P) is defined and finite at each P ED,,}
there exists at least one W(P) E £',,0 such that

for all P E D" .

Proof By condition (II), to every value of X(P) there exists a number
Y E [A, B] such that a(P, Y) = a(P, X(P» and b(P, Y) = b(P, X(P» and
c(P, Y) = c(P, X(P». Now define W(P) = Y. Since this process does not
change the coefficients, we get the same solution.

Let

We know that if a maximal solution exists, then it is in Y"" .
Let L" be an operator defined on d" as

(2.7)

where ex E [0, I) is some constant.
The next result follows easily.

LEMMA 4. Let ex and y be positive numbers with ex E [0, 1) and assume the
conditions in (I) and (II) are satisfied. Then for each ~ E d" and for each
WE .7l;.°there exists a unique Z(P) = Z(~; W: P) such that

yL,,[Z(P)] = yL,,[~(P)] - .P,,(W)[~(P)] + f(P),

Z(P) = 0, P E aD" ;
(2.8)

the operator L" is antitone for each ex E [0, 1). For each Q E Q" there exists a
unique G(P; Q) such that L,,[G(P; Q)] = -8(P; Q)/h2 for P E D", G(P; Q) = 0
for P E aD" ;here 8(P; Q) = 0 unless P = Q whence 8(P; P) = 1. IfG(P; Q)
is the discrete Green's function for L" in (2.8), then

Z(~; W: P) = -(1jy) h2 L G(P; Q){yL,,[~(Q)] - .P,,(W)[~(Q)] + f(Q)}.
~~ a~

Moreover,
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C1 = max{1 1 - a(P, X)/y I, I ex - 2b(P, X)/y I,
11 - c(P, X)/y I: (P, X) E Q" X [A, Bn. (2.10)

Hence, if C02(2C12f...12/f...04 + 1/y2) < 2f...12/f...04 and gE g;. , then Z E Y" .
Let Q be an element of Q" and let gE d". Then define 1f/ (g : Q) =

{W: WE [A, B] and yL,,[g(Q)] -2,,(W)[g(Q)] = min{yL,,[g(Q)] - 2,,(X)[g(Q)]:
X E [A, Bm and let 11'"(g) = {W: W E ~"o and, for each Q E Q",
W(Q) E 11'"(g : Q)}. Elements of 1f/(g) will be denoted by W(g: .) or W(g).

LEMMA 5. Ifconditions (I) and (II) are staisfied by (2.1), then 1f/(g : Q) oF °
for every gE ,QI" and for every Q E Q It • Hence there exists at least one element
WoE 1f/(g) such that

Z(g; Wo : P) :): Z(g; W: P)

for each P EQ" and for each WE .Yt',.0.

Proof One need only observe that 2,,(X)[g] is a continuous function of
XEE1.

Now we will study the behavior of Z = Z(g; Wo(g) : P) as a function of
gE ,YI" ; note that Wo(g) E 1f/(g). We will show that Z is a Lipschitz function
of gE d". To do this we must require that the principal coefficients satisfy
additional properties; these are contained in (III).

Let gEd" and let Q E Q". Suppose that g",xCQ) > 0, g",vCQ) < 0, and
g1/y(Q) > 0. Then, by (IIJ), there exists an WE 1f/(g: Q) such that
y - a(Q, W) = max{y - a(Q, X): X E [A, Bn, exy - 2b(Q, W) = min{exy 
2b(Q, X): X E [A, Bn, and y - c(Q, W) = max{y - c(Q, X): X E [A, Bn. If,
for some YJ E d" , YJ",xCQ) = 0, YJ",y(Q) < 0, and YJyy(Q) > 0, then 1f/(g : Q) C
1f/(YJ : Q) but these sets need not be equal.

The next result is central to the development of this section.

LEMMA 6. Let the conditions in (J), (II), and (]]]) be satisfied. Then
Z(g; Wo(g) : P) is a Lipschitz function ofgE d" . In particular, if gl , g2 Ed"

and if Zl = Z(gl ; WO(gl) : P), Zo = Z(g2 ; WO(g2) : P), then

(2.11 )

where

and
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where C3 = C3(d, ex) is a positive decreasing function of the diameter
d = (a2 + b2)l/2 such that

(2.13)

Proof We prove the estimate in (2.11).
Let gt = g2 + t(gl - g2) with t E [0, 1]; note that go = g2 and gl = gl'

Let Zt = Z(gt; Wot : P), where Wot E 1f"(gt); note that Woo E 1f"(go) = 1f"(g2)'
If t E (0, 1], then, at each point of Q h ,

yLh[Zo - Zt] = yLh[go - gt] (2.14)

+ {2'h(WOt) - 2'h(WOO)}[go] + 2'h(WOt)[gt - go]

and

yLh[Zo - Zt] = yLh[go - gt] (2.15)

+ {2'h(WOt) - 2'h(WOO)}[gt] + 2'h(WOO)[gt - go];

here

Observe that (2.14) and (2.15) are completely interchangeable and they are
a result of algebraic grouping and assume no properties of Wot or gt •

We will now partition Qh' Let Qii)(t) = {P: P E Qh and exactly i of the
expressions gt"'xCP), gt"'Y{P), gtyy(P) are zero}; note that gt"'xCP) =

(1 - t) g2"'X + tgl",x, etc. For every t E [0, 1],

3

Qh = L Q~i)(t)
i~O

with Q~i)(t) n Q~)(t) = °for i =1= j.
Now we partition Q~l)(t). Let Q~l.l)(t) = {P: P E Q~l)(t), gt"'x(P) = 0,

Igt"'vCP) gtyy(P)I > O},

Q~.2)(t) = {P: P E .Q~l)(f), gt"'y(P) = 0, I gt"'x(P) gty:v(P) [ > O},

and Qhl
.
3)(f) = {P: P E Qhl)(t), gtyy(P) = 0, I gt"'xCP) gt"'vCP)I > O}. For each

t E [0, 1],
3

Q~l)(t) = L Q~l,i)(t),
i=l
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Now we partition D1.2)(t). Let Dl.2.1)(t) = {P: P E D1.2)(t), ~txiP) =
~txy{P) = 0, I ~tyiP)1 > O}, Dl.2,2)(t) = {P: P E D1.2)(t), ~txx(P) = ~tyy(P) = 0,
I ~txy{P)! > O}, and

Dj,2.3)(t) = {P: P E D~2)(t), gtXY{P) = gtyy(P) = 0, i ttxx(P) I > O}.

For each t E [0, I),
3

Dj,2)(t) = L D~2.i)(t),
i~l

where D1.2,i){t) (\ D1.2·j)(t) = °for i -# j.
Let P E D h • Then, for some i, P E Dr)(O).
If i = 3, the identity in (2.l4) implies that

for all t E [0, 1); all the second order difference quotients of to are zero.
In this case 1Y(~t : Q) = [A, E).

Suppose that i = 0. Then ~oxx(P) . tOXY(P) . ~oyiP) =F °and there exists
a largest positive number TO{P) such that for all t E [0, TO(P)) we have that
~t"'x(P) . ~txiP) . ~tyy(P) -# 0; this follows since ~t is a linear function of t.
Let TO = min{To(P): P E Dl.°)(O)}. Then TO > ° since Dl.°)(O) has a finite
number of elements. Therefore, for all P E Dl.°)(O) and for all t E [0, TO), the
equation in (2.14) becomes

this follows since the elements of 1Y(~t : P) are completely determined by the
algebraic sign of the difference quotients of ~t evaluated at P.

Now we ask what happens at t = TO' Here we have that, for some
Po E Dl.°)(O), ~7 ",iPo) . ~7 Xy{Po) . ~7 yy-(Po) = °and this is the first value ofo 0 0

t E [0, TO{PO)) for which this happens. The algebraic sign of each second order
difference quotient of glPo) which does not vanish at t = TO remains of the
same algebraic sign for t = To as for t < To. Hence the numerical value of
each principal coefficient of !l'h which corresponds to a nonvanishing second
order difference quotient of ~lPo) at t = TO is the same as for t < TO'

Hence (2.15) implies that

Now suppose that i = 1. Then exactly one of the difference quotients of
~o(P) is zero. Suppose that P E Dj.l·l)(O) with ~O",y(P) > °and ~Oyy(P) < 0.
Then ~t"'X<P) = ttlXX<P) for all t E [0,1]; say ~lxX<P) > 0. Let Tll{P) be the
largest positive number in [0, I] such that ~tXY(P) > °and ~tyy{P) < °
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for all 1 E [0, Tn(P)). Then Wot E if/(gt : P) implies that a(P, Wot) =
max{a(P, X): X E [A, B]}, b(P, Wot) = max{b(P, X): X E [A, B]}, and

c(P, Wot) = min{c(P, X): X E [A, B]} for all 1 E [0, Tn(P)).

Suppose, at 1 = Tn(P), we have that tT xiP) = °but gT yy-(P) < 0. Then
11 11

a(P, WOT ) = a(P, Woo) and c(P, Wo- ) = c(P, Woo). Therefore
11 '11

for all 1 E [0, Tn(P)) and

Let Tn = min{Tn(P): P E Dhl.1l(O)}. Then the identifies in (2.17) and (2.18)
hold for all P E D h1•

1)(0) and for all 1 E [0, Tn]'
At this point we emphasize that there is no claim as to the continuity in 1

of Wot ; in general it is discontinuous in 1.

In general, to each P E Dr·il(O), there corresponds the largest positive
number Tij(P) E [0, 1] so that for all 1 E [0, Ti;{P)) we have P E Dj.i.i)(1).

Proceeding as above we see that (2.17) holds for 1 E [0, Tii(P)) and (2.18)
holds at 1 = Tii(P), Set Tii = min{Ti;{P): P E Dj.i,i)(O)}.

Let 11 = min{To , mini,i Tij}; clearly 11 > °as there are only a finite number
of positive quantities TO and Tii . Then for all P E D h

and

Therefore, as in (2.5), for all 1 E [0, 11]

Now we perform a similar analysis to show that there exists a 12 > 11

such that

(2.19)

for all 1 E r11 , 12], In deriving (2.19) we use the equation
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instead of (2.14) and we use the equation
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instead of (2.15).
Continuing in this manner we obtain a set T = {ti: i E I and ti E [0, I]},

where [is some ordered index set such that ti > t j for i > j.
Now we show that [has a finite number of elements. The value of a given Ii

is determined when a point P leaves some set .Qi.i,j)(t) or .Q(O)(t). But for
P E.Qh - .Qi.3), .Qi.3) = {P: P E.Qh and P E .Qi.3)(t) for all IE [0, I]}, each
second order difference quotient of gtCP) may vanish for at most one value
of t; if P E .Qi.3), then (2.16) holds for all t E [0, I]. Since .Qh has a finite
number of elements, [ must have a finite number of elements. Let
[ = {O, I, ... , N + I} with to = °and tN +! = 1.

We have that
N

Zo - Z1 = I (Ztm - Zt;)
i~O

and
N

II Zo - Z1 112 ~ I II ZttH - Ztt 112 .
i~O

Therefore

since

Hence the inequality in (2.11) follows.
The proof of (2.12) follows from earlier results and the representation

in (2.9).
At this point we wish to emphasize that if bOon .Qh X [A, B], then

ex = 0 and the proof above would give no reference to gt"'lI' However,
even in this case, the estimate in (2.5) remains valid.

A point P E.Qh is semiplanar (or planar) relative to gE 9'h ifg",iP) . g"'lI(P) .
ellj(p) = 0 (or e",x(p) = g",y{P) = gllj(P) = 0). If b(P, X) = ° for all
X E [A, B], then we would exclude any reference to g",.y(P) in these definitions.

Our last result may be improved if we exclude semiplanar points.
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LEMMA 7. If ~ E d h and if no point ifQ h is semiplanar relative to ~, then
dZ(~ + ETJ, Wo(~ + E'TJ) : P)JdE exists at E = 0 with any TJ E d h and

yLh[dZJdE] = yLh[TJ] - 2"h(WOW)[TJ]

where dZ/dE is the derivative evaluated at E = O.

Proof In the absence of semi-planar points it is clear that Wo(~ + ETJ : P)
is continuous at E = 0; i.e., Wo(~ + ETJ : P) E "IY(~ : P) for E small.

Our next result will establish some essential elementary properties.

LEMMA 8. (a) Let the hypotheses of Lemma 5 be satisfied and let W(P)
be an arbitrary element of :Yt',.0. Then

Z(Uw ; W: P) = Uw(P) and

(b) Let the hypotheses ofLemma 6 be satisfied. Then Z(~; Wo(~) : P) =
g(P) E Y'h for all P E Q h if and only if ~(P) solves (2.1) with discrete profile
Wo(g) and

for all P E Q h and for each R E .Yt'hO.

(c) If ~n E ~, ~n converges pointwise to go E ~ and Wo(~n) converges
pointwise to V, then Z(~n ; Wo(~n) : P) converges pointwise to Z(~o ; V: P)
and yep) E "IY(~o : P)for each P E Q h .

Proof (a) This is an immediate consequence of the representation in
(2.9).

(b) Suppose that Z(~; WoW: P) = g(P) for each P E Qh' Then we
clearly have that ~(P) solves (2.1) with discrete profile Wo(~) and, because

the assertion that ~ is a discrete maximal solution follows from Lemma 1.

Suppose that Uv is a maximal solution and that at some point of Q h ,

say Po, V(Po) 1: "IY(Uv : Po). Let Y(P) = V(P) for all P E Q h - {Po} and
Y(Po) = Wo(Uv : Po)· Then

-2"h(Y)[UV ] ~ -2"h(V)[UV ] = -f= -~.(Y)[Uy]

and Uv ~ Uy . Therefore, either Uv = Uy for all P E Q h or else
V E "IY(Uv : Po).

(c) Suppose there exists Po E Q h such that
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with € > O. Let n be so large that Z(£o ; V: P) = Z(£n ; Wo(£n) : P) + €1(P)
and Z(£o ; Wo(£o) : P) = Z(£n; Wo(£o) : P) + €2(P), where

for all P E Q" •

Then

this is a contradiction.

Our next result will establish existence and uniqueness of discrete maximal
solutions; we do not claim that a discrete maximal profile is unique.

THEOREM 1. (a) If the condition (I) is satisfied, then there exists at most
one discrete maximal solution.

(b) If the hypotheses of Lemma 6 are satisfied and if C2 < 1, then there
exists a discrete maximal solution and this may be obtained in an iterative
manner starting with any element in 9;. .

(c) If the hypotheses ofLemma 6 are satisfied and ifZ(£; Wo(£) : P) E 9;.
for all £ E 9'" , then a discrete maximal solution exists.

(d) The existence or non-existence of a discrete maximal solution may
be determined by solving (2.1)for afinite number ofprofiles in £,,0 even though
that set contains an uncountably infinite number ofelements.

Proof (a) This is immediate.

(b) Let Z(o)(P) be any element of 9;.. Let Z(n)(P) = Z(Z(n_1) ;
WO(Z(n-1») : P) : P) for n ~ 1. Then the sequence {Z(n)(P): n = 1,2,...}
converges to one and only one element £E 9;. . Let V(P) be any accumulation
point of {Wo(Z(n) : P): n = 1, 2,...}; the existence of V(P) follows from the
Heine-Borel Theorem and the fact that Qil has finite cardinality. Then for
some subsequence, denoted by n', we have that I Wo(Z(n') : P) - V(P) [
converges to zero as n' goes to infinity for all P E Q" . Now apply Lemma 8
to conclude that £(P) = Uv(P) is the discrete maximal solution and V(P) is
a discrete maximal profile.

(c) This follows from the Brouwer Fixed Point Theorem and Lemma 8.

(d) Let £~1) = {V(P): V E£"o and, for each P E!l", a(P, V(P)),
b(P, V(P)) and c(P, V(P)) corresponds to one of the 8 possible combinations
in (III)}. Then the cardinality of £~1) is at most 8K , K the number of mesh
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points in Qh' and, by Lemma 8(b), any discrete maximal solution must have
its discrete profile in £,~1). Hence one computes each element in
{Uv: V E £'~)}, this has cardinality of at most 8K , and one tests this finite set
to determine if there exists a Vo E £'h1) such that

Uvo(P) ~ Uv(P)

for all P E Q h and for each V E £,h1
).

The condition C2 < 1 is satisfied whenever I '\ - "0 I is sufficiently small;
a case often met in applied problems. If b(P, X) = °on Q X [A, Bl, IX = 0,
"I = 1, and Y = "1' then C2< 1 whenever I "I - "0 I < I/V6; the
requirement "I = 1 leads to no loss in generality.

Now we will make some general comments on discrete maximal profiles
and on their computation whenever the condition C2 < 1 is satisfied.

Let Po E Q h be such that the algebraic sign of each of the terms Z(n)",x(Po),
Z(n)",Y(Po), and Z(n)yy(Po) remains unchanged for all "sufficiently large" n.
Then the numerical value of each of the terms a(Po, Wo(Z(n) : Po)),
b(Po , Wo(Z(n) : Po)), and c(Po, Wo(Z(n) : Po)) remains constant for all
"sufficiently large" n although the value of Wo(Z(n) : Po) which we selected
in "fI/(Z(n) : Po) may fluctuate wildly with n. Hence, in this case, a value of
V(Po)-a discrete maximal profile-may be determined in a finite number of
computations.

By "sufficiently large" n we mean that there exists an integer N
such that the difference quotients of Z(N)(Po) are large in comparison to
I(Z(m) - Z(N»)/h2

1 for all m > N; note that Z(n) converges as a geometric
series.

This analysis will be radically altered if some second order difference
quotient of Z(n)(P) converges to zero and algebraic signs are not maintained
as n increases. For example, suppose that Z(n)",vCP1) and Z(n)yy(P1) maintain
their algebraic sign for large n but Z(n)",xCPl) . Z(n+!)",iPl) < °for all large n
and Z(n)",iPl) ---+ 0. Then {Wo(Z(n) : P): n = 0, I, ...} must have at least
two accumulation points unless a(P1 , X) is a constant in X. One such point
will be a maximum of a(P1 , X) and another such accumulation point will be
a minimum ofa(P1 , X). As there is no apriori way ofexcluding the occurrence
of such points PI (except for planar points-require I f(P)1 > °over Q) we
shall modify our definition of Wo(Z(n) : P) in such a way that, for each
P E Qh' the new sequence of functions converges, as n ---+ 00, to a unique
limit and this limit is a discrete maximal profile.

Let n~i) = {P: P E Q h and exactly i of the difference quotients of Z(n)(P)
do not maintain their algebraic sign as n ---+ oo}; here i = 0, 1,2, or 3. If
for example Z(n)",iPo) ---+ °as n ---+ 00 in an oscillatory manner (i.e., for
every n there is an n' > n such that Z(n)",iPo)' Z(n,)",iPo) < 0) but
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Z(n)xY{Po) > 0 and Zen)yy{Po) < 0 for all large n, then Po E Qh1
). It is clear

that Q" = L:=o {Jhi
) with {JI/) n Q~) = 0 for i =F- j.

Now we are prepared to modify our definition of Wo(Z(n): P); the
modified functions will be called W1(Z(n) : P).

If P E {JhO), we define W1(Z(n) : P) = Wo(Z(n) : P). If P E {Jh3
), then set

W1(Zn: P) = A. If P E {J~) + {Jh3
), then W1(Z(n) : P) is a minimizing or

maximizing element of those coefficients in (2.9) for which the corresponding
difference quotients do not tend to zero; e.g., if Zenp,xCPo) ->- 0 as n ->- 00 in
an oscillatory manner but Z(n)xY{Po) > 0 and Z(n).yy(Po) < 0 for all suffi
ciently large n, then W1(Z(n) : P) is a minimizing value of c(P, X) and a
maximizing value for b(P, X). Basically W1(Z(n) : P) ignores those principal
coefficients for which the corresponding difference quotients of Z(n) tend
to zero.

Let M(n)(P) be the solution to the problem

yL,,[M(n)(P)] = yL,,[Z(n)(P)] - ~,(Wl(Z(n) : P))[Z(n)(P)] + f(P), P E Q",

M(n)(P) = 0, P E aQ" .

Then our next result is easily proved.

COROLLARY 1. If the hypotheses of Theorem l(b) are satisfied, then
M(n) and Z(n) converge to the same element and the W1(Z(n) : P) converges
to an element W1(P) which is a discrete maximal profile.

The restriction that Q be a rectangular region is a result of the difference
problem in (2.1) and the estimate in (2.5). Using a different difference
formulation we may extend the results of this section to more general regions
Q (e.g., Q a disc) using results in r3].

3. THE DIFFERENTIAL EQUATION AND CONVERGENCE WITH (III)

In this section we will show that-under suitable hypotheses-the problem
in (1.2) has a solution and that solutions of the discrete problem converge to it.

Let z(~; w : P) E H2~0(.Q) be the solution of the equation

yL[z] = yL[~] - .P(w)[~] + f,

where y > 0, W E £'0, ~ E Hi,o(Q), and for any v E Hi.o(Q)

L[v] = V. xx + exv,x'!J + V,yy

with ex E [0, I].

(3.1)
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LEMMA 9. (a) Let the conditions in (1) and (II) be satisfied. Let WE£'o
and let v E H:.o(Q) solve the equation .P(w)[v] = fE LiQ) with P > 2. If
f;:? 0 a.e. over Q, then v ~ 0 over Q.

(b) If the conditions in (I), (II), and (Ill) are satisfied and if gE Hi.o(Q),
then there exists wo(g : P) E £,0 such that

for each P E Q and for all w E £,0.

Proof (a) This is an immediate consequence of results in Bers and
Nirenberg [1, pp. 154-156) and Talenti [9].

(b) The proof here proceeds as in Section 2 once we observe that
u E Hi.o(Q) implies that second order derivatives are finite almost everywhere
and hence wo(g : P) is defined for a particular representative of f

Let h be a positive number such that the set Q h is not empty and fjQh C fjQ.
Let hn , n ranges over the nonnegative integers, be a monotone decreasing
sequence of real positive numbers tending to zero, with ho = h, such that
Q h C Q h and fjQh C fjQh for each n and for all m ;:?: n; for brevity we let
Qnn = Q; . n m

Let Q:' = Q n + s(n)3 + S(n)4, where S(n)i = S(h )j, and let Po =

(xo , Yo) E Qh'. Let .A'n(Po) = {(x, y): xo ~ x < xo + h:, Yo ~ Y < Yo + hn}
and f7Jn = U{.A'n(P): P E Qn'}. Let n be given. Then for each and every P E Q
there exists one and only one Po E Qn' such that P E .A'n(Po); in particular,
Q + S3 + S4 = f7Jn ·

Let gE Co00(Q). Then we may reflect g across the fjQ so that the extended
function is infinitely differentiable over {(x, y): -ho ~ x ~ a + ho ,
-ho ~ y ~ b + ho}. Let f E C(Q). For each P E Qn' and for each fL E £'~

n

we let

where L(n) = L h and 2(n) = .Ph are defined as in Section 2. Now let
n n

where P is an arbitrary element of Q and Po is the unique element of Qh'
such that P E .A'n(Po).

LEMMA 10. (a) Let the conditions in (1), (II), and (III) be satisfied with
fE C(Q). For each fL E £'~ and for each g E Cooo(Q) let Zn = zn(g; fL : P) E
H:.o(Q) solve the equation n

(3.2)
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for P E Q. Then there exists an won(g : P) E £'~ such that
n

for all P E Q and for each J1, E £'t .

(b) If the hypotheses in (a) are satisfied and ifgl , g2 E Co"'(Q), then
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(3.3)

where

and Zin = Zn(gi ; Won(gi) : P) for i = l, 2.

(c) Let the conditions in (I), (II), and (Ill) be satisfied with f E C(Q). If
gi E Co"'(Q) for i = 1,2, then Zin converges strongly to Zi (Zi is given in
Lemma 9(b)) in Hi.o(Q) as n -* OC! and

I ZI - Z2 I~ ~ C2
2 I gl -- g2 I~ .

Moreover, for gl , g2 E H2~O(Q), we have that

I ZI - Z2 I~ ~ C2
2 I gl -- g2 I~ .

(d) Each of the above results holds iffE LiQ) with p > 2.

Proof (a) and (b) are proved as in Section 2; note that

f .fFn2(g: P) dP = hn2 L :~2(g : P).
Q fJn '

(3.4)

(3.5)

(c) If gE Co"'(Q), then second order difference quotients of gconverge
strongly in L 2(Q) to corresponding second order derivatives of f Thus there
exists a subsequence of the n so that this convergence is convergence
a.e. Hence yL(n)[g] - 2(n)(won(g))[g] + f converges almost everywhere to
yL[g] - Y(woW)[g] + f This occurs even if won(g : P) does not converge
to wo(g; P); see the discussion preceding Corollary 1. Therefore (3.4) is a
consequence of (3.3).

If gi E Hi.o(Q), i = I, 2, then there exists sequences from Co"'(Q) which
converge strongly in H;.o(Q) to ti and the analysis of the preceding paragraph
remains valid. Therefore (3.5) is a consequence of (3.4).

(d) If fE L p , then we may find a sequence of elements from C(Q)
which converge strongly to f in Lp(Q). The associated solutions of (3.1)
converge strongly in H;.o(Q) and our analysis extends to this more general
case.
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where

and

Our next result establishes existence and uniqueness for the problem in
(1.2); its proof follows closely that of Section 2.

THEOREM 2. (a) Let the conditions (I), (II), and (III) be satisfied. If there
exists gE Y such that z(g; woW: P) = g(P)for P E Q, then

~(P) ;:? uv(P)

for all P E Q and for each v E Yf'O.

(b) If (I), (II), and (III) are satisfied and if C2 < I, then the problem in
(1.2) has a unique maximal solution.

Now we will prove the convergence of the discrete maximal solutions to
the solution of (1.2). The basic idea of the proof is that step functions are
dense in Yf'O and solutions of (1.1) converge strongly in H;.o(Q) whenever the
coefficients converge a.e.

Our proof of this result will be greatly simplified if we require that (I') be
satisfied; i.e., (I) holds and, for all (P, X) E Q x El, a(P, X) = al(P) + a2(X),
b(P, X) = bl(P) + b2(X), c(P, X) = cl(P) + c2(X).

Let n be given and let en = {v(P): v E L",(Q), v is constant on each JVn(P)
for each P E Q n'}; each element of this set is a step function.

We will now establish sufficient conditions that the problem in (1.2) has a
solution over tffn' = tffn n Yf'O for each n.

THEOREM 3. If the conditions in (I'), (II), and (III) are satisfied with
C2 < I, then, for each n ;:? 0, there exists an Vn E en' such that

(3.6)

for every P E Q andfor each v E tffn'; this maximal solution is unique.

Proof For every VEen' and for every gE Y we define the function
z(g; v : P) E Hi.o(Q) such that yL[z] = yL[g] - 2(v)[g] + f We may write

z(t; v: P) = -(1/y) In ,§(P; Q){yL[t(Q)] - 2(v(Q»[t(Q)] + f(Q)} dQ

= -(1/y) L I ,§(P; Q){yL[g] - 2(v)[~] +f} dQ;
REnn' %n(R)
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here C§(P; Q) is the Green's function for the operator Lover Q. Let
wo(t : R) E [A, B] be such that

- J C§(P; Q){yL[t(Q)] - 2(wo(t : R))[t(Q)] + f(Q)} dQ
A"n(R)

~ - L'n(R) C§(P; Q){yL[t(Q)] - 2(v(R))[g(Q)j + f(Q)} (3.7)

for all vCR) E [A, B] and set wo(t : Q) = wo(t : R) for all Q E .Al'n(R). A slight
modification of the methods of Section 2 will allow us to prove that

The result now follows.
Let n be fixed and let m ~ n. For each R E Qn' let

Let

z(g; V: P) = -(1/y) L hm2 L G(P; Q){L(m)[gj - 2(m)(V)[tj + f}
REn.· OE9tm(R) (3.8)

for each g E 9';, and V E @"n'. We define Wo(t) as in (3.7).
The next res~lt, which may be proved as in Section 2, asserts that there

exists a discrete maximal solution over @"n'; note that when n = m we have
the results in Theorem I.

THEOREM 4. Let the conditions in (I'), (II), and (III) be satisfied with
C2 < I. Then, for each m > 0, there exists a unique t E 9"/t such that
Z(t; Wo(t) : P) = g(P) and m

t(P) ~ Uv(P) (3.9)

for each P E Qm andfor each V E @"n'.

We will now prove that solutions of (3.9) converge to solutions of (3.6)
as m goes to infinity; here n is fixed but arbitrary.

Let ex = °(note that this affects the value of C2), let Gm(P; Q) be the
discrete Green's function for L(m) over Qm , and let C§(P; Q) be the Green's
function for Lover Q. We will now prove that

when Q = (0, I) x (0, I).
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From references in [2, pp. 314-318] we know that

where Spa is the distance from P to Q and (P, Q) E Q x Q. Let

Km(Q) = {P : P E Qm', SpQ > h;;2}.

Then, for Po E Km(Q),

and, for every P E %m(Po),

Gm(P; Q) - Gm(Po ; Q) = JP Gm(1)(R; Q) dR, (3.11)
Po

where the integration in (3.11) is along lines connecting Po to P with no line
segment intersecting Km(Q) and Gm(1)(R; Q) denotes a first order directional
derivative of Gm with respect to R. It is easy to prove-with a modification of
the methods in [5]-that there exists a constant H > 0, which is independent
of hm , such that

For R E Km(Q), we have I/SRo ~ l/h1j.2. Also for P E %m(Po) we have
I P - Po I ~ hm V2. Hence

Therefore,
(3.12)

where 8(hm ) -4- 0 uniformly in Po as m -4- 00; e.g., see [1, p. 585] of [5].
Combining (3.10) and (3.12) gives

f Gm2(P; Q) dP = hm2Gm(Po ; Q) + 8(hm) hm2.
.A'"m(po)

If Km'(Q) = {P: P E Q, Spo ~ h1j.2} and Qm(Q) = Qm - K",(Q),

hm2L Gm2(P; Q) - J (§2(P; Q) dP -4- 0
Q

m
Q

as m -4- 00 since

hm2 L Gm2(P; Q) -+ O.
flm(Q)
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Therefore, we have proved that Gm(P; Q) converges strongly in L 2(Q) to
,§(P; Q). The above result holds with minor modification for general
rectangular regions Q.

Let U(m)(P) be the discrete maximal solution in (3.9) and let Wo(m)(P) be
a discrete maximal profile; we still have Cl: = O.

From Stummel [7] there exists a subsequence of the m, say m', such that
for every bounded and continuous a.e. function ~i (i = 1,2,3) which has
compact support on the plane there exists Uo EO H;,o([J) such that each of the
terms

h~' I ~3U(m')yY (3.13)
am'

converges to the respective term

Using the Heine-Borel Theorem we know that there exists an Wo EO (fn'

such that Wo(m") converges a.e. to Wo for some further subsequence, say m fr ,
of the m'. Note that over each .Af,.(P) the function Wo(m") must be constant
for all sufficiently large mfr.

In (3.13) let ~1 = a(P, Wo(m"» Gk(P; Q), ~2 = 2b(P, Wo(m"» Gk(P; Q) and
~3 = c(P, Wo(m"» G,.{P; Q) for some fixed k. Since the Gk(P; Q) converge
strongly to '§(P; Q), Ihm

2L Gm2 - hk L Gk2 I < € for any € > 0 and
for all m > k and for k sufficiently large. Therefore, for any € > 0 there
exists ko such that for all k > ko and for all m ~ k, we have

U(m) = hm L GmJm = hm L GkJm + hm L (Gm - Gk ) Jm
Om Q m Q m

(3.14)

where

and
J = L[uo] - 2"(Wo)[Uo] +f

It is not difficult to see-using (3.13)-that Uo solves the Eq. (Ll) with
profile Wo' Therefore (3.14) proves the pointwise convergence of U(m) to uo '

In fact we have proved that, for each v EO (fn', the solutions Uv of the difference
equation converge to the solution Uv of the differential equation.

Suppose Uo EO H2~O(Q) is not maximal. Then there exists v EO {fn' and Po EO Q

such that



274 MCALLISTER AND ROHDE

in fact, this inequality is valid in some neighborhood of Po. Therefore, if hm

is sufficiently small, this contradicts the fact that U(m) is maximal.
We have proved the following result.

THEOREM 5. If the hypotheses of Theorem 4 are satisfied with ex = 0 and
fE ql'J), then the discrete maximal solutions of (3.9) converge (weakly in
H:.o(Q) and pointwise) to the maximal solution in (3.6).

Let Wo be a maximal profile of Theorem 2 and let Wobe a particular element
from the equivalence class determined by Wo . Let W n E Iffn' be such that for
each Po E Qn' and for all P E Al'iPo) we have wn(P) = wo(P*) with p* an
arbitrary but fixed element of Ai'n(Po)' Then W n converges a.e. to Wo and Uw

converges strongly in H:.o(Q) (hence uniformly) to u
Wo

as n ---+ 00. Therefor~
for any € > 0 there is a sufficiently large n such that

for all P E Q. Hence,

with u" a maximal solution over Iffn', Uw - u" ~ 0, and u" - Uw ~ O.
nOn n n

Thus solutions of (3.6) come arbitrarily close to maximal solutions over £'0.
We have proved our final result.

THEOREM 6. If the hypotheses of Theorem 4 are satisfied with ex = 0 and
fE C(lJ), then the discrete maximal solutions over £'hO converge pointwise
to maximal solutions over £'0.

4. THE DIFFERENCE EQUATION WITH (IV)

In this section we will indicate how the methods of Section 2 may be
modified when the principal coefficients in (2.1) satisfy the conditions in (I),
(II), and (IV).

We assume that b(P, X) = 0 for all (P, X) E Q X £1; this will simplify our
computations without an intrinsic restriction of our results. We assume also
that Q is a rectangular domain.

Let (ex, y) E £2 and define

for XE £1.

F(ex, y : X) = a(P, X)<x + c(P, X)y (4.1)
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LEMMA 11. If the conditions (I) and (II) are satisfied, then for each
(CY, y) E £2 there exists Wo(CY, y) E [A, B] such that

F(cy, y : Wo(CY, y)) = max F(cy, y : X).
XEE1

(4.2)

(4.5)

Proof. This follows the reasoning of Lemma 3 and Lemma 5.
In the next result we show that (IV) implies the regularity of Wo(CY, y).

LEMMA 12. If the conditions (1), (11), and (IV) are satisfied, then
Wo(CY, y) E C1(£2 - {O, On.

Proof. Let CY • Y =F 0, Wo = Wo(CY, y), and WOE = Wo(CY + E, y). Then,
by (IV)(ii),

o = aF(ex, y: Wo)jaX = a'(P, Wo)CY + c'(P, Wo)y (4.3)

and

o = aF(cy + E, Y : wo.)jaX = a'(P, Wo.)(ex + E) + C'(P, Wo.)y. (4.4)

From condition (lV)(i) we know that not both a'(P, Wo) and C'(P, Wo)
may vanish. Let us assume that a'(P, Wo) • c'(P, Wo) =F O. Note that if
a'(P, Wo) . c/(P, Wo) = 0, then CY • Y = 0; this contradicts our assumption
that CY • Y =F O.

From (4.3),
y = -exa'(P, WO)jc/(P, Wo)·

Substituting (4.5) into (4.4) gives

a'(P, WO.) C/(P, Wo)(CY + E) - c'(P, WO.) a'(P, Wo)CY = O. (4.6)

We rewrite (4.6)-using Taylor's Theorem-as

where

K(P) = r{c'(P, Wo) al/(P, Wo+ t(Wo• - Wo))
o

- a'(P, Wo) cl/(P, Wo + t(Wo• - Wo))} dt. (4.8)

Hence, for some to E [0, 1],

K(P) = C/(P, Wo) al/(P, Wo+ to(Wo< - Wo))

- a'(P, Wo) cl/(P, Wo + to(Wo• - Wo)).

From (4.7) we claim that WOE is continuous in E at E = O.
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To see this we observe that the right-hand side of (4.7) tends to zero
independent of the behavior of WOE . Clearly, if K(P) is bounded away from
zero as € ---+ 0 our result is established. Assume that W0< is not continuous
at € = O. Then for some subsequence of € we may assume that the algebraic
sign of WOE - Wo is constant and, for some fixed fL > 0, I WOE - Wo I ---+

fL > 0 as € ---+ O. Now the condition (IV)(vi) implies a contradiction to the
assertion that I WOE - Wo I ---+ fL > O. Therefore, Wo(ex + €, y) ---+ Wo(ex, y)
as € ---+ O. By the same methods we have that Wo(ex, y + YJ) ---+ Wo(ex, y) as
YJ ---+ O.

Now we prove that Wo(ex + €, Y + YJ) ---+ Wo(ex, y) as (€, YJ) ---+ (0,0). As in
(4.3) we have that al'(ex + €) + cl'(y + YJ) = 0 = a'ex + c'y, where aI' =

a'(P, Wo(ex + €, Y + YJ», a' = a'(P, Wo(ex, YJ», etc. Hence cl'a' - al'c'
approaches zero as (€, YJ) ---+ (0, 0). By (iii) of (IV) all accumulation points of
Wo(ex + €, Y + YJ) are equal; note that aI' . cl ' eft 0 for small (€, YJ) since
(ex + €, Y + YJ) is in the same quadrant as (ex, y).

From (4.7) and the continuity of WOE we conclude that

c'(P, Wo) a'(P, Wo)
exL(P, Wo)

(4.9)

where

L(P, Wo) = c'(P, Wo) a"(P, Wo) ~ a'(P, Wo) c"(P, Wo)

with I L(P, Wo)1 > O.
A similar analysis will show that

oWo(ex, y) {a'(P, WoW
oex yL(P, Wo)

and

oWo(ex, y) c'(P, Wo) a'(P, Wo) -{c'(P, Wo)? (4.10)
oy yL(P, Wo) exL(P, Wo)

Consider the case that ex • y = 0 but ex2 + y2 > 0; suppose ex = O. Then,
by (lV)(ii) and (4.3), c'(P, Wo) = 0 and the equation in (4.4) becomes

a'(P, Wo.)€ + c'(P, Wo.)y = o.
Hence

a'(P, Wo)[c'(P, Wo.) - c'(P, Wo)]Y = -ea'(P, Wo.) a'(P, Wo)

or

y(Wo• - Wo)ra'(P, Wo) c"(P, tWo. + (l - t) Wo) dt
o

= -ea'(P, Wo) a'(P, Wo).
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By methods already developed we show that Wo is continuous along lines
parallel to the coordinate axes and we use (iv) and (v) of (IV) to show that Wo
is continuous and continuously differentiable in a neighborhood-relative
to £2 - {CO, O)}-of the coordinate axes.

The result is established.
For each gE d h and for each V E JEho let Z = Z(g; V: P) be the solution

(Lemma 4) of the problem

Z = 0, PE 8Q".
(4.11)

Then from (4.2) and Lemma 5, with Wo = Wo(gxx, gyy : P) = Wo(g) ,

for all P E Q h and for fall V E JEho.

In our next result we will show that Z(g; Wo : P) is a Lipschitz function of
gE,r4".

LEMMA 13. If the conditions in (I), (II), and (IV) are satisfied, ifg1 , g2 E d"
with Z1 = Z(g1; WO(g1) : P) and Z2 = Z(g2; WO(g2) : P), then

II Z1 - Z211~ ~ C2
2

11 g1 - g211~

with C22 given in Lemma 6.

Proof For each g1' g2 E d" let gt = tg1 + (1 - t) g2 , Wot =

Wo(gtxx, gty.'i : P) and Zt = Z(gt ; Wot : P).
If P E Q" is such that it is not semiplanar with respect to gt for all t E [0, t1),

then the derivative of Zt with respect to t exists and we have that

where Z/ = dZ/dt,

2"h'(WOt)[got] = {a'(P, Wot ) gtxx + c'(P, Wot) gtyy} dWotldt,

a' = 8a(P, X)/8X, c' = 8c(P, X)/8X, and

dWot = -a'(P, Wot) c'(P, W Ot) g _+ c'(P, Wot) a'(P, Wot) g __ ° (4.14)
dt gtxxK(P, Wot) txx gtyyK(P, Wot) tyy - .

Hence, for all such t E [0, t1) we have that
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At t = t1we have that gt,,,,x(P) = °or gt,yj(P) = 0. If P is not planar with
respect to gt -it will be semiplanar-then (4.15) remains valid. Hence we

1

look at the case that gt,xx(P) = gt,yj(P) = 0. From (2.15) we have that

yLh[Zt, - Zo] = yLh[gt, - go] - 2 h(WOO)[gt, - go]. (4.16)

If P E Q h is such that g2XX(P) = g2yiP) = 0, then gtxx(P) = tg1xxCP) and
gtyj(P) = tglyiP) and we obtain (4.16) for all t E [0, 1].

If P E Qh is such that g2xxCP) = °but g2yiP) =Ie 0, then gtxx(P) = tglx.~(P)

and there exists t1 > °such that (gtxx , gtyj) is in a fixed quadrant for all
t E [0, t1). Now proceed as in earlier cases observing that (4.14) is valid.

As in the proof of Lemma 6 there exists t1 > °such that for all t E [0, t1 ]

(4.17)

Now continue as in that proof to obtain (4.17) for all t E [0, 1].
The next result follows the methods of Section 2.

THEOREM 7. If the principal coefficients satisfy the conditions (I), (II),
and (IV) and if C2 < I, then there exists a unique discrete maximal solution
in Y h and a discrete maximal profile in £ho.

Let Z(n) = Z(Z(n-l); Wo(Z(n-l» : P) with Z(o) any element of Y h . Then, by
Lemma 13, ZlnJxx and Zlnlyj will converge to gxx and gyj for all
P E Qh and g is the maximal solution. If g;iP) + g;j(P) > 0, then
Wo(Z(n) : P) ---+ Wo(g : P) as n ---+ 00 by Lemma 12. If g;x(P) + g;j(P) = 0,
then

a(P, Wo(Z(n-l) : P» Zln--llxx(P) ---+ a(P, Wo(g : P» gxx(P)

and

a(P, Wo(Z(n-l) : P» Z<n-l)yj(P) ---+ a(P, Wo(g : P» gyj(P) as n ---+ 00.

Hence we would have the convergence of WO(Z(n-l) : P) to Wo(g: P) at all
points where I f(P)1 > 0.

An analysis of the differential equation in (1.1) when the conditions (I),
(11), and (IV) are satisfied by the principal coefficients proceeds along lines
similar to that taken in Section 3 with obvious modifications already presented
in this section.

5. SOME NUMERICAL EXAMPLES

Let Q = (0, I) x (0, 1), [A, B] = [7T/2,37T/2], a(P, X) = 1 + € sin X,
b(P, X) = 0, and c(P, X) == 1 with °< € < 1. The conditions (I), (II), and
(III) are satisfied.
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Let E = 0.1, <X = 0, f(P) - -1, and y = 1. Then the hypotheses of
Theorem 1 are satisfied. Choose the mesh size h = 0.25. Computations were
performed in double precision on an IBM370-168. The iteration process was
terminated when

(5.1)

The scheme converged in eight iterations with the maximal profile given as
the constant function Wo(P) = 37T/2. The corresponding maximal solution
is given in Table I with Uij = U(ih,jh). Due to symmetry we need only list
the values as given. In Table I we also give Ui;, where U;j is the solution
corresponding to the profile 37T/2 + 8(P'; P) with P' = (1/2, 1/2). Although
we do not list it in Table I we have compared Uij with all possible solutions
and found that Uij is indeed maximal.

TABLE I

j Uii U;j

1 1 0.04523597 0.04514034

1 2 0.05778250 0.05759604

2 1 0.05734908 0.05715252

2 2 0.07400175 0.07342695

We have applied the methods of Theorem 7 to the Eq. (2.1) with
a(P, X) = 2 + sin X, b(P, X) == 0, c(P, X) = 2 + cos X, Q = (0, 1) X (0, 1),
[A, B] = [0,27T] and h = 0.25. When <X = 0 and y = 1 the convergence
criterion in (5.1) was satisfied in nineteen iterations.

In Table II we list the values Uij of the discrete maximal solution and the
values WOii of a discrete maximal profile.

TABLE II

j Uij WOii

1 1 0.03343477 3.92698956

1 2 0.04269895 4.16812992

2 1 0.04269895 3.68584919

2 2 0.05478425 3.92698956
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